• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, H. (Han, H..) | Zhang, S. (Zhang, S..) | Qiao, J. (Qiao, J..)

收录:

Scopus PKU CSCD

摘要:

A soft-sensor method, based on the recurrent radial basis function neural network (RRBFNN), was proposed in this paper to solve the problem of the permeability measurement of membrane bio-reactor (MBR). First, the data was collected from a real wastewater treatment process in Beijing and the partial least squares (PLS) technique was utilized to select the variables which have the largest correlation with the permeability. Then, the soft-sensor model was developed to predict the permeability via RRBFNN. Meanwhile, a fast gradient descent method was used to adjust the parameters of RRBFNN. Finally, this soft-sensor method was applied to the real wastewater treatment process. The results show that the proposed soft-sensor method can predict the permeability of MBR with high accuracy. © 2017, Editorial Department of Journal of Beijing University of Technology. All right reserved.

关键词:

Membrane bio-reactor(MBR); Partial least squares; Permeability; Recurrent radial basis function neural network; Soft-sensor technique

作者机构:

  • [ 1 ] [Han, H.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Zhang, S.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Qiao, J.]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2017

期: 8

卷: 43

页码: 1168-1174

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:446/3908153
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司