• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Y. (Li, Y..) | Li, G. (Li, G..) (学者:李港) | Tong, T. (Tong, T..)

收录:

Scopus

摘要:

In this paper, we study ultra-high-dimensional partially linear models when the dimension of the linear predictors grows exponentially with the sample size. For the variable screening, we propose a sequential profile Lasso method (SPLasso) and show that it possesses the screening property. SPLasso can also detect all relevant predictors with probability tending to one, no matter whether the ultra-high models involve both parametric and nonparametric parts. To select the best subset among the models generated by SPLasso, we propose an extended Bayesian information criterion (EBIC) for choosing the final model. We also conduct simulation studies and apply a real data example to assess the performance of the proposed method and compare with the existing method. © 2017, © East China Normal University 2017.

关键词:

extended Bayesian information criterion; partially linear model; screening property; Sequential profile Lasso; ultra-high-dimensional data

作者机构:

  • [ 1 ] [Li, Y.]College of Applied Sciences, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Y.]Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing, China
  • [ 3 ] [Li, G.]Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing, China
  • [ 4 ] [Tong, T.]Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

通讯作者信息:

  • 李港

    [Li, G.]Beijing Institute for Scientific and Engineering Computing, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Statistical Theory and Related Fields

ISSN: 2475-4269

年份: 2017

期: 2

卷: 1

页码: 234-245

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:275/3911635
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司