• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Yuhuan (Chen, Yuhuan.) | Ren, Jihua (Ren, Jihua.) | Yi, Chengfu (Yi, Chengfu.)

收录:

EI Scopus SCIE

摘要:

This paper focuses on the tracking-control problem of nonlinear strict-feedback system by utilizing neural networks. Combining a novel recurrent neural network and gradient-based neural network, we investigate, develop and design a new controller based on the synthesized neural network model (N-G model) to track the output trajectory performance of the nonlinear strict-feedback system. This presented control scheme could have a good output tracking performance for the nonlinear strict-feedback system. For comparing with the presented N-G model, the classic backstepping design method is also employed to design the control input for the nonlinear strict-feedback control system in this paper. The computer simulation results demonstrate that the controller based on the N-G model could be used to tackle the tracking-control problem with accuracy and effectiveness, together with the faster convergent speed than that based on the backstepping algorithm. Generally speaking, with the appropriate increase of design parameters, the controller based on the N-G model could improve convergence performance for nonlinear strict-feedback system.

关键词:

nonlinear strict-feedback system recurrent neural network backstepping algorithm Output tracking-control

作者机构:

  • [ 1 ] [Chen, Yuhuan]Garman Normal Univ, Ganzhou 341000, Peoples R China
  • [ 2 ] [Chen, Yuhuan]Shenzhen Univ, Shenzhen 518060, Peoples R China
  • [ 3 ] [Ren, Jihua]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yi, Chengfu]Nanchang Inst Technol, Nanchang 330044, Jiangxi, Peoples R China
  • [ 5 ] [Yi, Chengfu]Jiangxi Univ Sci & Technol, Ganzhou 341000, Peoples R China

通讯作者信息:

  • [Yi, Chengfu]Nanchang Inst Technol, Nanchang 330044, Jiangxi, Peoples R China;;[Yi, Chengfu]Jiangxi Univ Sci & Technol, Ganzhou 341000, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2017

卷: 5

页码: 26257-26266

3 . 9 0 0

JCR@2022

中科院分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1804/4277817
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司