• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Z. (Zhang, Z..) | Ji, J. (Ji, J..)

收录:

Scopus PKU CSCD

摘要:

Since classification method of functional magnetic resonance imaging (fMRI) data can not effectively extract the local features, the classification accuracy is seriously affected. To solve the problem, a classification model of fMRI data based on convolutional neural network (CNN) is presented. Firstly, a CNN structure is designed, and a restricted boltzmann machine (RBM) model is constructed by means of the convolution kernel size. Then, the interested region voxels in fMRI data are employed to construct and form input data to pre-train RBM, and the relative transformation of the obtained weight matrix is executed to initialize CNN parameters. Finally, the final classification model is obtained by training the whole initialized model. The results on Haxby and LPD datasets show that the proposed model effectively improves the classification accuracy of fMRI data. © 2017, Science Press. All right reserved.

关键词:

Convolutional Neural Network; Functional Magnetic Resonance Imaging (fMRI) Data Classification; Restricted Boltzmann Machine

作者机构:

  • [ 1 ] [Zhang, Z.]Beijing Municipal Key Laboratory, College of Computer Science, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Ji, J.]Beijing Municipal Key Laboratory, College of Computer Science, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

  • [Ji, J.]Beijing Municipal Key Laboratory, College of Computer Science, Beijing University of TechnologyChina

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Pattern Recognition and Artificial Intelligence

ISSN: 1003-6059

年份: 2017

期: 6

卷: 30

页码: 549-558

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:846/3905228
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司