• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Rehman, Sadaqat Ur (Rehman, Sadaqat Ur.) | Tu, Shanshan (Tu, Shanshan.) | Huang, Yongfeng (Huang, Yongfeng.) | Liu, Guojie (Liu, Guojie.)

收录:

EI Scopus SCIE

摘要:

With the advancement of technology and expansion of broadcasting around the globe has further boost up biometric surveillance systems. Pattern recognition is the key track in this area. Convolution neural network (CNN) as one of the most prevalent deep learning algorithm has gain high reputation in image features extraction. In this paper, we propose few new twists of unsupervised learning i.e. convolution sparse filter learning (CSFL) to obtain rich and discriminative features of an image. The features extracted by CSFL algorithm are used to initialize the first CNN layer, and then these features are further used in feed forward manner by the CNN to learn high level features for classification. The linear regression classifier (softmax classifier) is used to serve as the output layer of CNN for providing the probability of an image class. We present and examine five different architectures of CNN and error function mean square error (MSE). The experimental results on a public dataset showcase the merit of the proposed method.

关键词:

feature extraction unsupervised learning Convolution neural network classification

作者机构:

  • [ 1 ] [Rehman, Sadaqat Ur]Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
  • [ 2 ] [Huang, Yongfeng]Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
  • [ 3 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Guojie]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

AI COMMUNICATIONS

ISSN: 0921-7126

年份: 2017

期: 5

卷: 30

页码: 311-324

0 . 8 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:165

中科院分区:4

被引次数:

WoS核心集被引频次: 71

SCOPUS被引频次: 51

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:195/4508432
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司