• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Yongliang (Yang, Yongliang.) | Yin, Yixin (Yin, Yixin.) | Wunsch, Donald (Wunsch, Donald.) | Zhang, Sen (Zhang, Sen.) | Chen, Xianzhong (Chen, Xianzhong.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Cheng, Shusen (Cheng, Shusen.) | Wu, Min (Wu, Min.) | Liu, Kang-Zhi (Liu, Kang-Zhi.)

收录:

EI Scopus SCIE

摘要:

The burden distribution process is an important and efficient measure to maintain the stable operation of the blast furnace. An accurate burden distribution model will reveal the impact on the internal furnace state and help to optimize the blast furnace production index. This article reviews the recent development of the modeling and control techniques in the burden distribution process. The current modeling methods of the blast furnace burden distribution can mainly be divided into the following types: the mechanism based method, the physical scale model-based experiments and the data-driven method. However, most of the existing modeling methods are not applicable to general blast furnaces because it depends on the specific furnace structure and parameters. Furthermore, with the advancement in measurement technology, sensors now provide rich amount of online measurement of the blast furnace iron-making process. This makes the data analysis more challenging. It is imperative to establish new modeling methods for the burden distribution process. Therefore, this paper points out the new trends in modeling and control of the blast furnace burden distribution process. First, a dynamic clustering method based on dynamic time warping and adaptive resonance theory is introduced. Second, the inverse dynamic model-based burden distribution control is developed. Furthermore, a multi-model-based switch for modeling the fluctuating blast furnace process is formulated. Finally, the reinforcement learning method for the dynamic optimization of the production index is recommended.

关键词:

burden distribution physical experiment dynamic clustering mechanism analysis inverse dynamic model reinforcement learning data-driven multi-model switching control

作者机构:

  • [ 1 ] [Yang, Yongliang]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 2 ] [Yin, Yixin]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 3 ] [Zhang, Sen]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 4 ] [Chen, Xianzhong]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 5 ] [Yang, Yongliang]Univ Sci & Technol Beijing, Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China
  • [ 6 ] [Yin, Yixin]Univ Sci & Technol Beijing, Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China
  • [ 7 ] [Zhang, Sen]Univ Sci & Technol Beijing, Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China
  • [ 8 ] [Chen, Xianzhong]Univ Sci & Technol Beijing, Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China
  • [ 9 ] [Wunsch, Donald]Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65409 USA
  • [ 10 ] [Li, Xiaoli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 11 ] [Cheng, Shusen]Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Beijing 100083, Peoples R China
  • [ 12 ] [Wu, Min]China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
  • [ 13 ] [Liu, Kang-Zhi]Chiba Univ, Dept Elect & Elect Engn, Chiba 2638522, Japan

通讯作者信息:

  • [Yin, Yixin]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China;;[Yin, Yixin]Univ Sci & Technol Beijing, Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISIJ INTERNATIONAL

ISSN: 0915-1559

年份: 2017

期: 8

卷: 57

页码: 1350-1363

1 . 8 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:287

中科院分区:4

被引次数:

WoS核心集被引频次: 25

SCOPUS被引频次: 36

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:146/4430964
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司