• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang Yan (Zhang Yan.) | Ji Junzhong (Ji Junzhong.) (学者:冀俊忠)

收录:

EI Scopus SCIE

摘要:

The objective of this study is to examine a swarm intelligence-based learning method for brain effect connected networks. Brain effect connected networks have exhibited approximation properties that parallel multi-layer perception properties. The brain effect connected network family is sufficiently wide to be able to uniformly approximate any continuous function on a compact set and perform satisfactory generalization in solving different classification and prediction problems. After the network is formulated as linear systems, the system equations of the brain effect connected networks have a form similar to that of the RBFL network, and both networks share the same "flat" architecture. Thus, the ELM algorithm can be successfully applied to brain effect connected networks similar to that of RBF. Some experimental results of benchmarking, as well of real-world approximation and classification problems, are reported to show the superiority of the presented network over existing brain effect connected models in terms of generalization performance.

关键词:

brain effect connected network swarm intelligence Learning method rough set theory

作者机构:

  • [ 1 ] [Zhang Yan]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Ji Junzhong]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang Yan]Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China

通讯作者信息:

  • [Zhang Yan]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China;;[Zhang Yan]Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

AGRO FOOD INDUSTRY HI-TECH

ISSN: 1722-6996

年份: 2017

期: 1

卷: 28

页码: 2031-2035

ESI学科: AGRICULTURAL SCIENCES;

ESI高被引阀值:145

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:106/3909055
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司