• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, X. (Jia, X..) | Li, N. (Li, N..) | Jin, Y. (Jin, Y..)

收录:

Scopus PKU CSCD

摘要:

Aiming at improving the generalization performance of the dynamic convolutional neural network on text sentiment classification, a dynamic convolutional extreme learning machine algorithm was proposed. This algorithm modified the output layer of dynamic convolutional neural network by replacing the fully connection layer with the shallow random neural network. By utilizing the perturbation ability of the random generation of parameters, it is prone to mitigate the dependence on training samples and avoid over-fitting to improve the classification performance. Experiments on several public data sets show that this approach outperforms the dynamic convolutional neural network and extreme learning machine under the evaluation metrics including accuracy rate, F1-measure, etc. © 2017, Editorial Department of Journal of Beijing University of Technology. All right reserved.

关键词:

Dynamic convolutional; Dynamic convolutional extreme learning machine; Extreme learning machine; Text sentiment classification

作者机构:

  • [ 1 ] [Jia, X.]College of Computer Science, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Li, N.]College of Computer Science, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Jin, Y.]College of Computer Science, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Technology

ISSN: 0254-0037

年份: 2017

期: 1

卷: 43

页码: 28-35

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1235/3642307
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司