• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Ya-fei (Jia, Ya-fei.) | Tian, Yun (Tian, Yun.) | Li, Yu-jian (Li, Yu-jian.) | Fu, Peng-bin (Fu, Peng-bin.)

收录:

EI Scopus SCIE

摘要:

Metric learning algorithms have been widely applied for hyperspectral image (HSI) dimensionality reduction and classification. One of the metric learning algorithms proposed recently is discriminative locality alignment (DLA). The DLA attacks the distribution nonlinearity of samples, and preserves the discriminative ability. However, the DLA needs to manually adjust a parameter called scaling factor and produce mutually correlated discriminant vectors that may lead to unsatisfactory classification results. In this letter, a modified DLA algorithm, i.e., quotient DLA (QDLA), is proposed to solve the problems outlined previously. Moreover, we extend QDLA to a novel exponential DLA (EDLA) algorithm, which can achieve a more effective transformation from a nonlinear mapping of original data into a new space. The classification results with HSIs demonstrate that the performances of the proposed EDLA are better than other related methods.

关键词:

metric learning matrix exponential hyperspectral image (HSI) Dimensionality reduction

作者机构:

  • [ 1 ] [Jia, Ya-fei]Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
  • [ 2 ] [Li, Yu-jian]Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
  • [ 3 ] [Fu, Peng-bin]Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
  • [ 4 ] [Tian, Yun]Calif State Univ, Dept Comp Sci, Coll Engn & Comp Sci, Fullerton, CA 92834 USA

通讯作者信息:

  • [Jia, Ya-fei]Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

ISSN: 1545-598X

年份: 2017

期: 1

卷: 14

页码: 33-37

4 . 8 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:163

中科院分区:3

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:884/3886136
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司