• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Yang, Ji-Jiang (Yang, Ji-Jiang.) | Zhao, Yu (Zhao, Yu.) | Liu, Bo (Liu, Bo.) (学者:刘博) | Zhou, Mengchu (Zhou, Mengchu.) | Bi, Jing (Bi, Jing.) | Wang, Qing (Wang, Qing.)

收录:

EI Scopus SCIE

摘要:

Collaborative fltering is now successfully applied to recommender systems. The availability of extensive personal data is necessary for generating high quality recommendations. However, traditional collaborative fltering methods suffer from sparse and sometimes cold-start problems, particularly for newly deployed recommenders. Currently, several recommender systems exist in good working order, and data collected from these existing systems should be valuable for newly deployed recommenders. This paper introduces a privacy preserving shared collaborative fltering problem in order to leverage the data from other parties (contributors) to improve its own (benefciaries) collaborative fltering performance, with the privacy protected under a differential privacy framework. It proposes a two-step methodology to solve this problem. First, item-based neighborhood information is selected as the shared data from the contributor with guaranteed differential privacy, and a practical enforcement mechanism for differential privacy is proposed. Second, two novel algorithms are developed to enable the beneficiary to leverage the shared data to support improved collaborative fltering. The extensive experimental results show that the proposed methodology can increase the recommendation accuracy of the benefciary significantly while preserving data privacy for the contributors.

关键词:

Data sharing online information service electronic commerce security and privacy protection

作者机构:

  • [ 1 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Jianqiang]Tsinghua Univ, Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
  • [ 3 ] [Yang, Ji-Jiang]Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
  • [ 4 ] [Wang, Qing]Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
  • [ 5 ] [Zhao, Yu]Douban Inc, Beijing 100020, Peoples R China
  • [ 6 ] [Liu, Bo]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Bi, Jing]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Zhou, Mengchu]New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
  • [ 9 ] [Zhou, Mengchu]Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China

通讯作者信息:

  • [Yang, Ji-Jiang]Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2017

卷: 5

页码: 35-49

3 . 9 0 0

JCR@2022

中科院分区:2

被引次数:

WoS核心集被引频次: 29

SCOPUS被引频次: 30

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:101/3929254
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司