• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Ziqi (Liu, Ziqi.) | Zheng, Qinghua (Zheng, Qinghua.) | Wang, Fei (Wang, Fei.) | Qian, Buyue (Qian, Buyue.)

收录:

EI Scopus SCIE

摘要:

Topical communities have shown useful tools for characterizing social networks. However data in social networks often come as streams, i.e., both text content (e.g., emails, user postings) and network structure (e.g., user friendship) evolve over time. We propose two nonparametric statistic models where infinite latent community variables coupled with infinite latent topic variables. The temporal dependencies between variables across epochs are modeled via a rich-gets-richer scheme. We focus on characterizing three dynamic aspects in social streams: the number of communities or topics changes (e.g., new communities or topics are born and old ones die out); the popularity of communities or topics evolves; the semantics such as community topic distribution, community participant distribution and topic word distribution drift. Furthermore, we develop an effective online posterior inference algorithm for the models, which is concordant with the online nature of social streams. Experiments using real-world data show the effectiveness of our model at discovering the dynamic topical communities in social streams. (C) 2016 Elsevier B.V. All rights reserved.

关键词:

Social streams Topical community Bayesian nonparametric models

作者机构:

  • [ 1 ] [Liu, Ziqi]Xi An Jiao Tong Univ, Dept Comp Sci & Technol, MOEKLINNS Lab, Xian 710049, Peoples R China
  • [ 2 ] [Zheng, Qinghua]Xi An Jiao Tong Univ, Dept Comp Sci & Technol, MOEKLINNS Lab, Xian 710049, Peoples R China
  • [ 3 ] [Qian, Buyue]Xi An Jiao Tong Univ, Dept Comp Sci & Technol, MOEKLINNS Lab, Xian 710049, Peoples R China
  • [ 4 ] [Wang, Fei]Beijing Univ Technol, Sch Software Engn, Beijing, Peoples R China

通讯作者信息:

  • [Liu, Ziqi]Xi An Jiao Tong Univ, Dept Comp Sci & Technol, MOEKLINNS Lab, Xian 710049, Peoples R China;;[Qian, Buyue]Xi An Jiao Tong Univ, Dept Comp Sci & Technol, MOEKLINNS Lab, Xian 710049, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2016

卷: 216

页码: 439-450

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:167

中科院分区:3

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:350/4976506
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司