• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Jian (Tang, Jian.) | Liu, Zhuo (Liu, Zhuo.) | Zhang, Jian (Zhang, Jian.) | Wu, Zhiwei (Wu, Zhiwei.) | Chai, Tianyou (Chai, Tianyou.) | Yu, Wen (Yu, Wen.)

收录:

EI Scopus SCIE

摘要:

Heavy key mechanical devices relate to production quality and quantity of complex industrial process directly. It is necessary to estimate some difficulty-to-measure process parameters inside these devices. Multi-component and non-stationary mechanical signals, such as vibration and acoustic ones, are always employed to model these process parameters indirectly. How to effective extract and select interesting information from these signals is the key step to build effective soft sensor model. In this paper, a new kernel latent features adaptive extraction and selection method is proposed. Ensemble empirical mode decomposition (EEMD) is used to decompose these mechanical signals into multiple time scales sub signals with different physical interpretations. These sub-signals are transformed to frequency spectra, and then kernel partial least squares (KPLS) algorithm is used to extract their kernel features. Integrated with mutual information (MI)-based feature selection method, a new define index is exploited to select the important sub-signals and their latent features adaptively. The shell vibration and acoustic signals of an experimental laboratory-scale ball mill in the mineral grinding process are used to validate the proposed approach. (C) 2016 Elsevier B.V. All rights reserved.

关键词:

Kernel partial least squares (KPLS) Ensemble empirical mode decomposition (EEMD) Process parameter estimation Industrial mechanical device Feature extraction and feature selection Multi-component non-stationary mechanical signal

作者机构:

  • [ 1 ] [Tang, Jian]Nanjing Univ Informat Sci & Technol, Jiangsu Engn Ctr Network Monitoring, Nanjing 210044, Peoples R China
  • [ 2 ] [Tang, Jian]Northeaster Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R China
  • [ 3 ] [Liu, Zhuo]Northeaster Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R China
  • [ 4 ] [Wu, Zhiwei]Northeaster Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R China
  • [ 5 ] [Chai, Tianyou]Northeaster Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R China
  • [ 6 ] [Zhang, Jian]NUIST, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
  • [ 7 ] [Tang, Jian]Beijing Univ Technol, Coll Elect & Control Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Yu, Wen]CINVESTAV IPN, Dept Control Automat, Av IPN 2508, Mexico City 07360, DF, Mexico

通讯作者信息:

  • [Liu, Zhuo]Northeaster Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2016

卷: 216

页码: 296-309

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:167

中科院分区:3

被引次数:

WoS核心集被引频次: 13

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:322/3778375
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司