• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xiao, Hong (Xiao, Hong.) | Guo, Hang (Guo, Hang.) (学者:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chongfang (Ma, Chongfang.)

收录:

EI Scopus SCIE

摘要:

Knowledge concerning the complicated changes of mass and heat transfer is desired to improve the performance and durability of unitized regenerative fuel cells (URFCs). In this study, a transient, non-isothermal, single-phase, and multi-physics mathematical model for a URFC based on the proton exchange membrane is generated to investigate transient responses in the process of operation mode switching from fuel cell (FC) to electrolysis cell (EC). Various heat generation mechanisms, including Joule heat, reaction heat, and the heat attributed to activation polarizations, have been considered in the transient model coupled with electrochemical reaction and mass transfer in porous electrodes. The polarization curves of the steady-state models are validated by experimental data in the literatures. Numerical results reveal that current density, gas mass fractions, and temperature suddenly change with the sudden change of operating voltage in the mode switching process. The response time of temperature is longer than that of current density and gas mass fractions. In both FC and EC modes, the cell temperature and gradient of gas mass fraction in the oxygen side are larger than that in the hydrogen side. The temperature difference of the entire cell is less than 1.5 K. The highest temperature appears at oxygen-side catalyst layer under the FC mode and at membrane under a more stable EC mode. The cell is exothermic all the time. These dynamic responses and phenomena have important implications for heat analysis and provide proven guidelines for the improvement of URFCs mode switching.

关键词:

heat transfer mass transfer mode switching transient response unitized regenerative fuel cells

作者机构:

  • [ 1 ] [Xiao, Hong]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Chongfang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Xiao, Hong]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Ye, Fang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Ma, Chongfang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 9 ] [Guo, Hang]Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Coll Environm & Energy Engn, Beijing 100124, Peoples R China;;[Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China;;[Guo, Hang]Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ENERGIES

ISSN: 1996-1073

年份: 2016

期: 12

卷: 9

3 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:102

中科院分区:4

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 30

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:302/3765461
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司