收录:
摘要:
多元医学信号的典型代表有多模态睡眠图和多通道脑电图等,采用无监督深度学习表征多元医学信号是目前健康信息学领域中的一个研究热点。为了解决现有模型没有充分结合医学信号多元时序结构特点的问题,该文提出了一种无监督的多级上下文深度卷积自编码器(mCtx-CAE)。首先改进传统卷积神经网络结构,提出一种多元卷积自编码模块,以提取信号片段内的多元上下文特征;其次,提出采用语义学习技术对信号片段间的时序信息进行自编码,进一步提取时序上下文特征;最后通过共享特征表示设计目标函数,训练端到端的多级上下文自编码器。实验结果表明,该文所提模型在两种应用于不同医疗场景下的多模态和多通道数据集(UCD和CHB-MIT)...
关键词:
通讯作者信息:
电子邮件地址: