• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Jia (Lin, Jia.) | Ruan, Xiaogang (Ruan, Xiaogang.) | Yu, Naigong (Yu, Naigong.) (学者:于乃功) | Yang, Yee-Hong (Yang, Yee-Hong.)

收录:

EI Scopus SCIE PubMed

摘要:

Noise and constant empirical motion constraints affect the extraction of distinctive spatiotemporal features from one or a few samples per gesture class. To tackle these problems, an adaptive local spatiotemporal feature (ALSTF) using fused RGB-D data is proposed. First, motion regions of interest (MRoIs) are adaptively extracted using grayscale and depth velocity variance information to greatly reduce the impact of noise. Then, corners are used as keypoints if their depth, and velocities of grayscale and of depth meet several adaptive local constraints in each MRoI. With further filtering of noise, an accurate and sufficient number of keypoints is obtained within the desired moving body parts (MBPs). Finally, four kinds of multiple descriptors are calculated and combined in extended gradient and motion spaces to represent the appearance and motion features of gestures. The experimental results on the ChaLearn gesture, CAD-60 and MSRDailyActivity3D datasets demonstrate that the proposed feature achieves higher performance compared with published state-of-the-art approaches under the one-shot learning setting and comparable accuracy under the leave-one-out cross validation.

关键词:

adaptive gesture recognition motion region of interest one-shot learning optical flow spatiotemporal feature

作者机构:

  • [ 1 ] [Lin, Jia]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ruan, Xiaogang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yu, Naigong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Lin, Jia]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Ruan, Xiaogang]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Yu, Naigong]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Yang, Yee-Hong]Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada

通讯作者信息:

  • [Lin, Jia]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Lin, Jia]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SENSORS

年份: 2016

期: 12

卷: 16

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:147

中科院分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:105/3270273
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司