• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Pang, Junbiao (Pang, Junbiao.) (学者:庞俊彪) | Tao, Fei (Tao, Fei.) | Zhang, Chunjie (Zhang, Chunjie.) | Zhang, Weigang (Zhang, Weigang.) | Huang, Qingming (Huang, Qingming.) (学者:黄庆明) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Detecting "hot" topics from the enormous user-generated content (UGC) data on web poses two main difficulties that the conventional approaches can barely handle: 1) poor feature representations from noisy images or short texts, and 2) uncertain roles of modalities where the visual content is either highly or weakly relevant to the textual cues due to the less-constrained UGC. In this paper, following the detection-by-ranking approach, we address above challenges by learning a robust latent representation from multiple, noisy and a high probability of the complementary features. Both the textual features and the visual ones are encoded into a k-nearest neighbor hybrid similarity graph (HSG), where nonnegative matrix factorization using random walk is introduced to generate topic candidates. An efficient fusion of multiple HSGs is then done by a latent poisson deconvolution, which consists of a poisson deconvolution with sparse basis similarity for each edge. Experiments show significantly improved accuracy of the proposed approach in comparison with the state-of-the-art methods on two public datasets.

关键词:

user-generated content (UGC) web topic detection latent poisson deconvolution (LPD) multi-view learning (MVL) K-nearest neighbor similarity graph

作者机构:

  • [ 1 ] [Pang, Junbiao]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Tao, Fei]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
  • [ 3 ] [Zhang, Chunjie]Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
  • [ 4 ] [Zhang, Weigang]Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China
  • [ 5 ] [Zhang, Weigang]Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100049, Peoples R China
  • [ 6 ] [Huang, Qingming]Univ Chinese Acad Sci, Chinese Acad Sci, Beijing 100049, Peoples R China
  • [ 7 ] [Huang, Qingming]Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
  • [ 8 ] [Yin, Baocai]Dalian Univ Technol, Adv Invocat Ctr Future Internet Technol, Dalian 116024, Peoples R China
  • [ 9 ] [Yin, Baocai]Beijing Univ Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Weigang]Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON MULTIMEDIA

ISSN: 1520-9210

年份: 2016

期: 12

卷: 18

页码: 2482-2493

7 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:167

中科院分区:1

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:175/4610402
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司