• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

邓凯 (邓凯.) | 黄佳进 (黄佳进.) | 秦进 (秦进.)

收录:

CQVIP CSCD

摘要:

用户-物品交互模式建模是个性化推荐的一项重要任务,许多推荐系统都基于用户与商品之间存在线性关系的假设,忽略了现实物品与历史物品之间交互的复杂性和非线性,导致这些系统不足以捕捉到用户的复杂决策过程。为此,将一个更有表现力的Top-N推荐系统的物品相似性因子模型解决方法与多层感知机方法相结合,以有效地建模物品之间的高阶关系,捕获更复杂的用户决策。分别在三个数据集MovieLens、Foursquare和ratings_Digital_Music上验证了结合后的效果,并与基准方法 MLP、分解物品相似度模型(FISM)、DeepICF和ItemKNN进行对比,结果表明,所提出的方法在推荐性能上有明显...

关键词:

用户决策 高阶关系 深度神经网络 个性化推荐 非线性

作者机构:

  • [ 1 ] 贵州大学计算机科学与技术学院
  • [ 2 ] 北京工业大学国际WIC研究院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

计算机应用

年份: 2020

期: 02

卷: 40

页码: 530-534

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:422/3864648
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司