• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

何浩祥 (何浩祥.) | 王玮 (王玮.) | 黄磊 (黄磊.)

收录:

EI Scopus CSCD

摘要:

为改进目前传统损伤识别方法对桥梁局部小损伤识别能力较弱的不足,提出利用深度学习方法中的卷积神经网络对桥梁损伤进行统计模式识别.根据卷积神经网络对损伤特征向量的需求,将车桥耦合振动下的原始结构响应信号进行小波包滤波和重构,之后通过递归分析获取不同损伤工况的递归图,将其作为新型的损伤特征图像作为卷积神经网络的输入.在此基础上提出基于卷积神经网络和递归图的桥梁结构损伤识别计算流程和方法.对一座连续梁桥进行不同位置和程度的损伤模拟,提取小波包频带能量及递归图等损伤特征向量,并进行基于多种统计模式识别算法的损伤识别.结果表明:与其他特征向量相比,递归图蕴含更丰富的损伤信息;与支持向量机和BP神经网络等传统统计模式识别方法相比,卷积神经网络能够通过逐层智能学习实现更准确的特征自动提取和区分,从而实现损伤位置和损伤程度的更精准识别.

关键词:

深度学习 递归图 小波包 智能识别 卷积神经网络 损伤识别 小损伤

作者机构:

  • [ 1 ] [何浩祥]北京工业大学
  • [ 2 ] [王玮]北京工业大学
  • [ 3 ] [黄磊]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

应用基础与工程科学学报

ISSN: 1005-0930

年份: 2020

期: 4

卷: 28

页码: 966-980

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:115/5009836
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司