• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xichang (Wang, Xichang.) | Wang, Pu (Wang, Pu.) | Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Qi, Yongsheng (Qi, Yongsheng.)

收录:

Scopus SCIE

摘要:

The conventional data-driven soft sensor methods such as multiway partial least squares have been encountering nonlinear problems in predictions of batch processes, and kernel methods have been used to deal with these problems. In this work, a new data-driven soft sensor method is proposed by developing a Reduced Dual Kernel multiway partial least squares algorithm. First, the number of kernel vectors is reduced by the feature vector selection method. Then, by. projecting both input data and the output data into two reduced kernel spaces, dual kernel matrices are established. These two matrices can be used to build PLS models. Finally, the predicted data in the kernel space can be reversely projected onto its original space during online prediction. Comparisons were made among the proposed method and some pervious algorithms through a numerical example and an Escherichia coli fermentation batch process. (C) 2016 Elsevier B.V. All rights reserved.

关键词:

Online prediction Batch process Feature vector selection Kernel partial least squares Partial least squares Process monitoring

作者机构:

  • [ 1 ] [Wang, Xichang]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Pu]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Gao, Xuejin]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Qi, Yongsheng]Inner Mongolia Univ Technol, Coll Elect Power, Hohhot 010051, Peoples R China

通讯作者信息:

  • 高学金

    [Gao, Xuejin]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS

ISSN: 0169-7439

年份: 2016

卷: 158

页码: 138-145

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:221

中科院分区:2

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 27

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:351/3904696
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司