• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

张文 (张文.) | 崔杨波 (崔杨波.) | 李健 (李健.) | 陈进东 (陈进东.)

收录:

CQVIP CSCD CSSCI

摘要:

由于推荐系统中存在巨量的用户和商品,现有的协同过滤方法很难处理用户-商品推荐中的数据稀疏性和计算可扩展性问题。本文提出了一种基于聚类矩阵近似的协同过滤推荐方法CF-cluMA。一方面,CF-cluMA方法通过对用户和商品进行分别聚类,并利用聚类后的用户-商品分块评分矩阵来刻画用户对于商品兴趣的局部性特点,以降低用户-商品评分矩阵的全局稀疏性。另一方面,CF-cluMA方法通过对局部稠密分块矩阵实施奇异值分解,并利用施密特变换近似全局用户-商品评分矩阵来预测用户对未知商品评分,以降低协同过滤算法的复杂性。在EachMovie电影评分真实数据集上的实验表明,相比于已有的基于矩阵近似的协同过滤推荐方...

关键词:

矩阵近似 协同过滤 谱聚类 数据稀疏性 可扩展性

作者机构:

  • [ 1 ] 北京工业大学经济管理学院
  • [ 2 ] 西安文理学院信息工程学院
  • [ 3 ] 北京化工大学经济管理学院
  • [ 4 ] 北京信息科技大学经济管理学院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

运筹与管理

年份: 2020

期: 04

卷: 29

页码: 171-178

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:533/3880570
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司