• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Chao (Jia, Chao.) | Li, Xiaoli (Li, Xiaoli.) (学者:李晓理) | Wang, Kang (Wang, Kang.) | Ding, Dawei (Ding, Dawei.)

收录:

Scopus SCIE PubMed

摘要:

In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. (C) 2016 ISA. Published by Elsevier Ltd. All rights reserved.

关键词:

Adaptive control ELM EM-ELM Neural networks OS-ELM

作者机构:

  • [ 1 ] [Jia, Chao]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 2 ] [Wang, Kang]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 3 ] [Ding, Dawei]Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
  • [ 4 ] [Li, Xiaoli]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 李晓理

    [Li, Xiaoli]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISA TRANSACTIONS

ISSN: 0019-0578

年份: 2016

卷: 65

页码: 125-132

7 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:102

中科院分区:2

被引次数:

WoS核心集被引频次: 25

SCOPUS被引频次: 32

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:193/3605322
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司