• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jun (Zhang, Jun.) | Zhou, Nanguang (Zhou, Nanguang.) | Sun, Zipeng (Sun, Zipeng.) | Li, Gaorong (Li, Gaorong.) (学者:李高荣) | Wei, Zhenghong (Wei, Zhenghong.)

收录:

Scopus SCIE

摘要:

We consider the estimation and hypothesis testing problems for the partial linear regression models when some variables are distorted with errors by some unknown functions of commonly observable confounding variable. The proposed estimation procedure is designed to accommodate undistorted as well as distorted variables. To test a hypothesis on the parametric components, a restricted least squares estimator is proposed under the null hypothesis. Asymptotic properties for the estimators are established. A test statistic based on the difference between the residual sums of squares under the null and alternative hypotheses is proposed, and we also obtain the asymptotic properties of the test statistic. A wild bootstrap procedure is proposed to calculate critical values. Simulation studies are conducted to demonstrate the performance of the proposed procedure, and a real example is analyzed for an illustration.

关键词:

local linear smoothing distortion measurement errors restricted estimator bootstrap procedure

作者机构:

  • [ 1 ] [Zhang, Jun]Shenzhen Univ, Coll Math & Stat, Shen Zhen Hong Kong Joint Res Ctr Appl Stat Sci, Inst Stat Sci, Shenzhen 518060, Peoples R China
  • [ 2 ] [Zhou, Nanguang]Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
  • [ 3 ] [Sun, Zipeng]Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
  • [ 4 ] [Li, Gaorong]Beijing Univ Technol, Coll Appl Sci, Beijing Ctr Sci & Engn Comp, Beijing 100124, Peoples R China
  • [ 5 ] [Wei, Zhenghong]Shenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen 518060, Peoples R China

通讯作者信息:

  • [Zhang, Jun]Shenzhen Univ, Coll Math & Stat, Shen Zhen Hong Kong Joint Res Ctr Appl Stat Sci, Inst Stat Sci, Shenzhen 518060, Peoples R China

查看成果更多字段

相关关键词:

来源 :

STATISTICA NEERLANDICA

ISSN: 0039-0402

年份: 2016

期: 4

卷: 70

页码: 304-331

1 . 5 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:71

中科院分区:4

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:409/4968494
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司