收录:
摘要:
In this study, we investigate the movement of dislocations in Ni-based superalloys under the influence of lattice misfit stresses between the ordered gamma'-cuboids and the disordered gamma-matrix during thermal exposure in the absence of an applied load. This study focuses on a different condition than the conventional creep testing, and thus offers a unique opportunity to study the intrinsic behavior of the alloy. The dislocation density increases substantially with time during thermal exposure, leading to the formation of various configurations of dislocation networks on the {100}(gamma/gamma') interfaces, including <110> diamond-shaped, <110>/<100> mixed polygon-shaped and <100> square-shaped networks. During thermal exposure, the b = l/2<110> native dislocations first move and evolve into 60 mixed dislocations along the <110> directions on the {100}(gamma/gamma') interfaces, forming the <110> diamond-shaped dislocation networks. In the case of longer thermal exposures, the dislocations further evolve into pure edge dislocations along the <100> on the {100}(gamma/gamma') interface, leading to the evolution of the <110> diamond shaped dislocation networks into <100> square-shaped networks, with the mixed <1104<100> dislocation networks as an intermediate stage during the transition. These movements occur by sweep glide in the {111} planes and diagonal climb on the {100} planes for the edge and mixed dislocations and by cross-slip for the screw dislocations. The driving force for all of these movements is the interaction between the normal misfit stresses and the edge components of the Burgers vectors of the dislocations to relax the misfit stresses. An analysis based on the elastic strain energy considerations is presented to explain the driving forces for the dislocation movements. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ACTA MATERIALIA
ISSN: 1359-6454
年份: 2016
卷: 120
页码: 95-107
9 . 4 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:305
中科院分区:1
归属院系: