收录:
摘要:
体育视频包含大量不同类型的人体,其中运动员的行为与比赛进程和视频内容直接相关,因此运动员检测是体育视频分析的关键环节.现有人体目标检测算法在通用人体检测任务上取得了良好的性能,但是无法有效区分运动员和非运动员.专门训练一个运动员检测模型需要标注大量的运动员位置,成本较高.本文提出了一种基于多示例学习的人体目标检测方法.在通用人体检测的基础上,引入多示例学习模块,基于图像级标注,通过弱监督方式自动学习获取特征映射矩阵,将人体特征映射到运动员特征空间,最后通过度量人体特征与运动员特征之间的相似度,实现运动员与非运动员的区分.对比实验结果表明,本文方法充分利用通用人体检测框架,以极小的标注数据量达到了专门训练运动员检测模型的精度.
关键词:
通讯作者信息:
电子邮件地址: