• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

吴玉超 (吴玉超.) | 林岚 (林岚.) | 王婧璇 (王婧璇.) | 吴水才 (吴水才.) (学者:吴水才)

收录:

CQVIP CSCD

摘要:

随着网络结构的迅速发展,卷积神经网络(CNN)在图像分析领域已成为一种领先的机器学习工具。因此,基于CNN的语义分割也已成为医学图像理解中的一项关键高级任务。本文综述了基于CNN的语义分割在医学图像领域中的研究进展,回顾了多种经典的语义分割方法及其架构变化,并重点介绍了它们在该领域的贡献和意义。在此基础上,进一步总结和讨论了它们在一些重要的生理与病理解剖结构分割中的应用。最后,本文讨论了语义分割在医学图像领域应用将遭遇的挑战和潜在发展方向。

关键词:

卷积神经网络 语义分割 医学应用

作者机构:

  • [ 1 ] 北京工业大学生命科学与生物工程学院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

生物医学工程学杂志

年份: 2020

期: 03

卷: 37

页码: 533-540

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:875/4224595
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司