收录:
摘要:
端到端的驾驶决策是无人驾驶领域的研究热点.本文基于DDPG(Deep Deterministic Policy Gradient)的深度强化学习算法对连续型动作输出的端到端驾驶决策展开研究.首先建立基于DDPG算法的端到端决策控制模型,模型根据连续获取的感知信息(如车辆转角,车辆速度,道路距离等)作为输入状态,输出车辆驾驶动作(加速,刹车,转向)的连续型控制量.然后在TORCS(The Open Racing Car Simulator)平台下不同的行驶环境中进行训练并验证,结果表明该模型可以实现端到端的无人驾驶决策.最后与离散型动作输出的DQN(Deep Q-learning Network...
关键词:
通讯作者信息:
电子邮件地址: