• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Miao (Zhang, Miao.) | Yang, Qing (Yang, Qing.) | Zhang, Jianhua (Zhang, Jianhua.) | Wang, Cong (Wang, Cong.) | Wang, Shuying (Wang, Shuying.) (学者:王淑莹) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

Scopus SCIE PubMed

摘要:

A two-sludge system consisting of anaerobic anoxic oxic biological contact oxidation (A(2)/O BCO) was developed to treat domestic wastewater with a low carbon/nitrogen (COD/TN) ratio (around 3.21) by shortening sludge retention time (SRT) for phosphorus accumulating organisms (PAOs) in the A(2)/O reactor and prolonging SRT for nitrifiers in the BCO reactor. Specifically, the BCO reactor was composed of three stages in series (N-1, N-2 and N-3), so that simultaneous nitrogen and phosphorus removals by denitrifying PAOs (DNPAOs) was achieved in the A(2)/O reactor with NO. N as the electron acceptor from the BCO reactor. Long term operational tests (600 days) were conducted with various operational parameters [e.g., hydraulic retention time (HRTs), nitrate recycling ratio (Rs), volume ratio (Vs)] to examine the denitrifying phosphorus removal performance. The system exhibited the highest removal of TN and PO43--P at the HRTs of 8 h, Rs of 300% and Vs of 2:4:1. The optimal IN and PO43--P removals were 80.30% and 96.61% at low COD/TN of 3.21. The species diversity and microbial community examined by the Illumina MiSeq method demonstrated the fact of two sludge system, and the improved community structure by long-term optimization was prominent comparing with the seed sludge. Additionally, Accumulibacter and Dechloromonas were the dominant functional PAOs with 25.74% in the A(2)/O reactor, while nitrifiers (including Nitrosomonas and Nitrospira) were gradually enriched with 13.10%, 21.33%, and 31.10% in the three stages of the BCO reactor. (C) 2016, The Society for Biotechnology, Japan. All rights reserved.

关键词:

Anaerobic anoxic oxic-biological contact oxidation Denitrifying phosphorus removal Illumina MiSeq Microbial diversity Optimization

作者机构:

  • [ 1 ] [Zhang, Miao]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Qing]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Jianhua]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Cong]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Shuying]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Engn Res Ctr Beijing, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Engn Res Ctr Beijing, Beijing 100124, Peoples R China

通讯作者信息:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Engn Res Ctr Beijing, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF BIOSCIENCE AND BIOENGINEERING

ISSN: 1389-1723

年份: 2016

期: 4

卷: 122

页码: 456-466

2 . 8 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:145

中科院分区:3

被引次数:

WoS核心集被引频次: 71

SCOPUS被引频次: 85

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:166/3603280
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司