• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) (学者:金浏) | Li, Dong (Li, Dong.) (学者:李冬) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

Scopus SCIE

摘要:

The reliable design of reinforced concrete (RC) structures against external mechanical forces, including earthquake-induced, impact and other types of forces, necessitates a clear understanding of the mechanical behavior and size effect of moderate high-strength RC structural members under cyclic loading. This study presents the results of an experimental study on a series of geometrically similar moderate high strength RC columns under monotonic and cyclic axial compression. A total of 16 moderate high-strength RC columns with different structural dimensions (in the ratio 1:2:3:4) were tested. The cross-sectional size of the columns was between 200 mm and 800 mm, and the length varied from 600 mm to 2400 mm. The overall mechanical performances of the moderate high-strength RC columns, including the failure patterns, the hysteretic curves, the nominal compressive stress-strain relationships, the peak load-carrying capacity, the energy-dissipation capacity, the nominal compressive strength, the concrete softening behavior and the buckling/necking of steel rebar were observed and explored. The test observations indicate the existence of size effect in relatively larger-sized moderate high-strength RC columns under both monotonic and cyclic axial compression, and the RC columns under cyclic loading pronounce a more obvious size effect. It is found that the bi-logarithmic plots of nominal compressive strengths for different moderate high-strength RC columns follows closely the "size effect law (SEL)" proposed by Baiant. (C) 2016 Elsevier Ltd. All rights reserved.

关键词:

Axial compression Cyclic load High-strength RC column Monotonic load Nominal strength Size effect

作者机构:

  • [ 1 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Dong]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 李冬 杜修力

    [Li, Dong]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China;;[Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ENGINEERING STRUCTURES

ISSN: 0141-0296

年份: 2016

卷: 124

页码: 269-285

5 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:102

中科院分区:2

被引次数:

WoS核心集被引频次: 32

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1283/2904145
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司