• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Feng, Sanying (Feng, Sanying.) | Lian, Heng (Lian, Heng.) | Xue, Liugen (Xue, Liugen.) (学者:薛留根)

收录:

Scopus SCIE

摘要:

In this paper, we propose a nested modified Cholesky decomposition for modeling the covariance structure in multivariate longitudinal data analysis. The entries of this decomposition have simple structures and can be interpreted as the generalized moving average coefficient matrices and innovation covariance matrices. We model the elements of these matrices by a class of unconstrained linear models, and develop a Fisher scoring algorithm to compute the maximum likelihood estimator of the regression parameters. The consistency and asymptotic normality of the estimators are established. Furthermore, we employ the smoothly clipped absolute deviation (SCAD) penalty to select the relevant variables in the models. The resulting SCAD estimators are shown to be asymptotically normal and have the oracle property. Some simulations are conducted to examine the finite sample performance of the proposed method. A real dataset is analyzed for illustration. (C) 2016 Elsevier B.V. All rights reserved.

关键词:

Moving average Multivariate longitudinal data Maximum likelihood estimation Covariance structure Variable selection Cholesky decomposition

作者机构:

  • [ 1 ] [Feng, Sanying]Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
  • [ 2 ] [Feng, Sanying]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Xue, Liugen]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Lian, Heng]Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia

通讯作者信息:

  • 薛留根

    [Xue, Liugen]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMPUTATIONAL STATISTICS & DATA ANALYSIS

ISSN: 0167-9473

年份: 2016

卷: 102

页码: 98-109

1 . 8 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:71

中科院分区:3

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:833/3913078
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司