• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

杨萍 (杨萍.) | 王丹 (王丹.) | 康子健 (康子健.) | 李童 (李童.) | 付利华 (付利华.) | 余悦任 (余悦任.)

收录:

CQVIP CSCD

摘要:

为了适用于长期心电监护和ICU等实时性、数据密集型应用场合,提出可在8 Hz采样频率的1 min心电图(ECG)片段上提前45 min预测阵发性房颤(PAF)发作的实时预测模型.采用概率符号化模式识别方法,在降采样后的ECG序列上提取出1 min窗口内的模式转移特征,降低模型的计算量和对存储空间的需求,确保实时预测的效果.提出卷积神经网络(CNN)和长短-期记忆网络(LSTM)的混合模型(CNN-LSTM),用于提取模式转移特征内隐含的局部空间特征和时间依赖特征.为了提升模型泛化能力,构建基于CNN-LSTM的集成分类器.采用Spark Streaming技术完成对ECG流式数据的读、写和计算...

关键词:

心电图(ECG) 卷积神经网络(CNN) 阵发性房颤 预测 长短-期记忆网络(LSTM) Spark Streaming 概率符号化模式识别

作者机构:

  • [ 1 ] 北京工业大学信息学部

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

浙江大学学报(工学版)

年份: 2020

期: 05

卷: 54

页码: 1039-1048

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:589/4227685
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司