• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ju, Jiang (Ju, Jiang.) | Fu, Hanguang (Fu, Hanguang.) (学者:符寒光) | Lei, Yongping (Lei, Yongping.) (学者:雷永平)

收录:

EI Scopus SCIE

摘要:

The Fe-B-Al alloy containing 0 to 10.0 wt.-% Al was melted in a vacuum induction furnace. Effects of the aluminum addition on the microstructure and properties of Fe-B-Al alloys were studied by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), hardness testing and MMG-500 type pin-on-disk high temperature vacuum wear testing. The results showed that the as-casted microstructure of the aluminum-free Fe-B alloy consisted of alpha-Fe, Fe-2(B,C), and Fe-23(B,C)(6) type borocarbides. However, the as-casted microstructure of the Fe-B-Al alloy consists of a Fe3Al type intermetallic compound when the aluminum content is more than 6.0 wt.-%. Compared with the aluminum-free Fe-B alloy, parts of the borocarbide networks are broken, and the fracture tendency became more obvious with the increase of the aluminum content. Boron is mainly distributed over the borocarbide. Aluminum is mainly distributed over the matrix and Fe3Al type intermetallic compound. Compared with the aluminum-free Fe-B alloy, the addition of a small amount of aluminum reduces slightly the hardness. The hardness gradually increased with the further increasing of the aluminum content. The hardness reached 48.1 HRC when aluminum content was 10.0 wt.-%. The high temperature wear resistance of Fe-B-Al alloy gradually increased with the increase of the aluminum content. When the aluminum content reached 10.0 wt.-%, the high temperature wear resistance of the alloy was the best.

关键词:

Aluminum alloying Fe-B alloy hardness solidification microstructure wear resistance

作者机构:

  • [ 1 ] [Ju, Jiang]Beijing Univ Technol, Beijing, Peoples R China
  • [ 2 ] [Fu, Hanguang]Beijing Univ Technol, Beijing, Peoples R China
  • [ 3 ] [Lei, Yongping]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

  • 符寒光

    [Fu, Hanguang]Beijing Univ Technol, Sch Mat Sci & Engn, 100 Pingle Garden, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

MATERIALS TESTING

ISSN: 0025-5300

年份: 2016

期: 9

卷: 58

页码: 753-762

2 . 5 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:198

中科院分区:4

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1007/2910230
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司