收录:
摘要:
Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4+-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation. (c) 2016 Elsevier Ltd.
关键词:
通讯作者信息: