收录:
摘要:
为了改善传统K-Modes聚类算法相异度度量公式弱化了类内相似性,忽略了属性间差异,以及单一属性值的Modes忽视了某一属性可能存在多属性值组合,且算法受初始中心点影响很大的缺点,基于多属性值Modes的相异度度量方法提出MAV-K-Modes算法,并采用一种基于预聚类的初始中心选取方法.使用UCI数据集进行实验,结果表明,MAV-K-Modes算法相比于传统K-Modes算法,其正确率、类精度和召回率都有明显提升,且MAV-K-Modes算法适合于并行化改造.
关键词:
通讯作者信息:
电子邮件地址: