收录:
摘要:
针对无人机(UAV)视频中目标易受到遮挡、形变、复杂背景干扰等问题,提出一种基于自适应深度网络的无人机目标跟踪算法.首先,基于主成分分析(PCA)和卷积神经网络(CNN)算法,设计3阶的自适应深度网络进行目标特征提取,该网络对图像的H、S、I通道分别进行主成分分析学习,将得到的特征向量输入网络进行分层卷积,优化了网络结构,提高了网络的收敛速度和精度.其次,将目标深度特征输入核相关滤波算法进行目标跟踪,通过分析相邻2帧图像的变化率,采用分段自适应调整学习率的算法进行目标模板更新,有效地改善目标遮挡问题.仿真实验结果表明,该算法有效地避免了复杂因素干扰导致的跟踪精度下降,具有较好的鲁棒性,相较于全卷积跟踪(FCNT)算法平均跟踪精度提高了9.62%,平均跟踪成功率提高了11.9%.
关键词:
通讯作者信息:
电子邮件地址: