• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Ling (Ji, Ling.) (学者:嵇灵) | Huang, Guo-He (Huang, Guo-He.) | Huang, Lu-Cheng (Huang, Lu-Cheng.) (学者:黄鲁成) | Xie, Yu-Lei (Xie, Yu-Lei.) | Niu, Dong-Xiao (Niu, Dong-Xiao.)

收录:

Scopus SCIE

摘要:

High penetration of wind power generation and deregulated electricity market brings a great challenge to the electricity system operators. It is crucial to make optimal strategy among various generation units and spinning reserve for supporting the system safety operation. By integrating interval two-stage programming and stochastic robust programming, this paper proposes a novel robust model for day ahead dispatch and risk-aversion management under uncertainties. In the proposed model, the uncertainties are expressed as interval values with different scenario probability. The proposed method requires low computation, and still retains the complete information. A case study is to validate the effectiveness of this approach. lacing the uncertainties of future demand and electricity price, the system operators need to make optimal dispatch strategy for thermal power units and wind turbine, and arrange proper spinning reserve and flexible demand response program to mitigate wind power forecasting error. The optimal strategies provide the system operators with better trade-off between the maximum benefits and the minimum system risk. In additional, two different market rules are compared. The results show that extra financial penalty for the wind power dispatch deviation is another efficient way to enhance the risk consciousness of decision makers and lead to more conservative strategy. (C) 2016 Elsevier Ltd. All rights reserved.

关键词:

Day-ahead market Bidding strategy Stochastic robust programming Uncertainty Wind power generation

作者机构:

  • [ 1 ] [Ji, Ling]Beijing Univ Technol, Sch Econ & Management, 100 Ping Le Yuan, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Lu-Cheng]Beijing Univ Technol, Sch Econ & Management, 100 Ping Le Yuan, Beijing 100124, Peoples R China
  • [ 3 ] [Huang, Guo-He]Univ Regina, Fac Engn, Environm Syst Engn Program, Regina, SK S4S 0A2, Canada
  • [ 4 ] [Xie, Yu-Lei]Univ Sci & Technol Beijing, Sch Mech Engn, Beijing 100083, Peoples R China
  • [ 5 ] [Niu, Dong-Xiao]North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China

通讯作者信息:

  • 嵇灵

    [Ji, Ling]Beijing Univ Technol, Sch Econ & Management, 100 Ping Le Yuan, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2016

卷: 109

页码: 920-932

9 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:166

中科院分区:1

被引次数:

WoS核心集被引频次: 37

SCOPUS被引频次: 41

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:862/4281062
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司