Indexed by:
Abstract:
设计了基于ESN(Echo State Network,ESN)神经网络的PM2.5时均值预测方法,并讨论了基于偏最小二乘回归的数据选择方式。在仿真实验中,通过与径向基函数(Radial Basis Function,RBF)神经网络和反向传播(Back Propagation,BP)神经网络方法比较,验证了基于ESN神经网络模型预测的可行性。实验结果表明,与径向基神经网络和反向传播神经网络方法比较,基于ESN神经网络预测模型能较好预测PM2.5时均值变化趋势,且得到较好的预测结果。
Keyword:
Reprint Author's Address:
Email:
Source :
控制工程
Year: 2019
Issue: 01
Volume: 26
Page: 1-5
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0