收录:
摘要:
针对湿式球磨机多工况运行过程中标签样本难以获取和工况改变导致的原测量模型失准问题,本文引入域适应随机权神经网络(Domain adaptive random weight neural network, DARWNN),实现待测工况中少量标签样本与原工况样本共同进行迁移学习.DARWNN网络解决了不同工况间难以共同进行机器学习的问题,但其只考虑经验风险,而未考虑结构风险,从而泛化性能较差,预测精度较低.在此基础上,本文引入流形正则化,并构建基于流形正则化的域适应随机权神经网络(Domain adaptive manifold regularization random weight, neur...
关键词:
通讯作者信息:
电子邮件地址: