• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ding, Juncai (Ding, Juncai.) | Wu, Bin (Wu, Bin.) (学者:吴斌) | He, Cunfu (He, Cunfu.) (学者:何存富)

收录:

Scopus SCIE PubMed

摘要:

Compared with body waves, ultrasonic guided waves can provide more local characteristic information about the interface in the defect detection of adhesive structures. In the paper, the expressions of the reflection and transmission coefficients of the lowest SH mode (SH0) in multilayered plate-like adhesive structure were deduced on the basis of wave propagation controlling equations and tangential stiffness coefficient K-T was contained in the expressions. Then, the expressions were compared with the previous results to verify their applicability and correctness. Then, aluminum/epoxy resin/aluminum adhesive structures were used to explore the effects of the changes in incident angle, frequency-thickness product and tangential stiffness coefficient on SH wave propagation characteristics in adhesive structures with different interface quality (perfect, weak bonding, and slip/debonding interfaces). The results showed that the propagation mode of SH wave in adhesive structures was mainly determined by the incident angle, frequency, adhesive layer thickness and tangential stiffness coefficient. With the increase in the frequency-thickness product, multi-order resonance is generated in the reflection and transmission coefficient curves of SH wave under the perfect and weak bonding interfaces. If proper values of the incident angle of acoustic waves and frequency-thickness product are selected, the perfect, weak bonding, and slip/debonding interfaces can be differentiated from each other, but the slip and debonding interfaces cannot be distinguished from each other. The study provides theoretical contribution to the detection of multilayered plate-like adhesive structure by SH wave. (C) 2016 Elsevier B.V. All rights reserved.

关键词:

Adhesive structure Interface bonding conditions Lowest SH mode Multi-order resonance Tangential stiffness coefficient

作者机构:

  • [ 1 ] [Ding, Juncai]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Bin]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 3 ] [He, Cunfu]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 吴斌

    [Wu, Bin]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ULTRASONICS

ISSN: 0041-624X

年份: 2016

卷: 70

页码: 248-257

4 . 2 0 0

JCR@2022

ESI学科: CLINICAL MEDICINE;

ESI高被引阀值:128

中科院分区:3

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:2982/2926015
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司