收录:
摘要:
This work presents an aptamer-based, highly sensitive and specific sensor for atto- to femtomolar level detection of bisphenol A (BPA). Because of its widespread use in numerous products, BPA enters surface water from effluent discharges during its manufacture, use, and from waste landfill sites throughout the world. On-site measurement of BPA concentrations in water is important for evaluating compliance with water quality standards or environmental risk levels of the harmful compound in the environment. The sensor in this work is porous, conducting, interdigitated electrodes that are formed by laser-induced carbonization of flexible polyimide sheets. BPA-specific aptamer is immobilized on the electrodes as the probe, and its binding with BPA at the electrode surface is detected by capacitive sensing. The binding process is aided by ac electroosmotic effect that accelerates the transport of BPA molecules to the nanoporous graphene-like structured electrodes. The sensor achieved a limit of detection of 58.28 aM with a response time of 20 s. The sensor is further applied for recovery analysis of BPA spiked in surface water. This work provides an affordable platform for highly sensitive, real time, and field-deployable BPA surveillance critical to the evaluation of the ecological impact of BPA exposure.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
年份: 2016
期: 28
卷: 8
页码: 17784-17792
9 . 5 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:305
中科院分区:2