• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cao, Shenbin (Cao, Shenbin.) | Du, Rui (Du, Rui.) | Li, Baikun (Li, Baikun.) | Ren, Nanqi (Ren, Nanqi.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

EI Scopus SCIE PubMed

摘要:

In this study, the microbial community structure was assessed in an anaerobic ammonium oxidation-upflow anaerobic sludge blanket (ANAMMOX-UASB) reactor treating high-strength wastewater (approximately 700 mg N L-1 in total nitrogen) by employing Illumina high-throughput sequencing analysis. The reactor was started up and reached a steady state in 26 days by seeding mature ANAMMOX granules, and a high nitrogen removal rate (NRR) of 2.96 kg N m(-3) day(-1) was obtained at 13.2 similar to 17.6 A degrees C. Results revealed that the abundance of ANAMMOX bacteria increased during the operation, though it occupied a low proportion in the system. The phylum Planctomycetes was only 8.39 % on day 148 and Candidatus Brocadia was identified as the dominant ANAMMOX species with a percentage of 2.70 %. The phylum of Chloroflexi, Bacteroidetes, and Proteobacteria constituted a percentage up to 70 % in the community, of which the Chloroflexi and Bacteroidetes were likely to be related to the sludge granulation. In addition, it was found that heterotrophic denitrifying bacteria of Denitratisoma belonging to Proteobacteria phylum occupied a large proportion (22.1 similar to 23.58 %), which was likely caused by the bacteria lysis and decay with the internal carbon source production. The SEM images also showed that plenty of other microorganisms existed in the ANAMMOX-UASB reactor.

关键词:

High-strength wastewater High-throughput sequencing analysis ANAMMOX Microbial community structure Denitrifying bacterium

作者机构:

  • [ 1 ] [Cao, Shenbin]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
  • [ 2 ] [Ren, Nanqi]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
  • [ 3 ] [Peng, Yongzhen]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
  • [ 4 ] [Du, Rui]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Baikun]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Baikun]Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA

通讯作者信息:

  • 彭永臻

    [Peng, Yongzhen]Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China;;[Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY

ISSN: 0175-7598

年份: 2016

期: 14

卷: 100

页码: 6457-6467

5 . 0 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:238

中科院分区:2

被引次数:

WoS核心集被引频次: 171

SCOPUS被引频次: 194

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:367/3900079
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司