收录:
摘要:
为了解决弱纹理与遮挡区域中难以准确匹配对应点的问题,在马尔可夫随机场(Markov random field,MRF)框架下,提出一种结合卷积神经网络(convolutional neural network,CNN)与分割线索的立体匹配算法.首先,采用特征表达能力强的CNN提取立体图像特征并匹配区域块.同时,对图像进行区域分割.然后,基于CNN匹配结果构造MRF能量函数数据项.基于分割结果定义能量函数项,通过其他区域约束弱纹理和遮挡区域的匹配过程.最后,最优化求解能量函数计算视差.在Middlebury与KITTI数据集上验证该算法和能量函数各项的作用,并与近2年提出方法进行性能比较.结果表...
关键词:
通讯作者信息:
电子邮件地址: