收录:
摘要:
为了挖掘基于视频的动态手势识别问题中手势的固有时空表示,提出一种3D-2D受限玻尔兹曼机(restricted Boltzmann machine,RBM)模型,以便建模手势视频数据的时空相关信息.特别地,为了更好地描述动态手势的时空特征,提出传统手工定义特征与3D-2D RBM结合的混合特征表示方法,该方法首先提取Canny-2D HOG表观特征以及光流-2D HOG运动特征,然后基于3D-2D RBM进一步学习动态手势潜在的高层时空语义特征,提升动态手势的特征描述力.融合手势外观判别和运动判别的双通道融合判别改进了单通道分类的能力.在公开的剑桥手势数据集上的实验验证了所提方法的有效性和优越...
关键词:
通讯作者信息:
电子邮件地址: