Indexed by:
Abstract:
Si/Ge uni-traveling carrier photodiodes exhibit higher output current when space-charge effect is overcome and the thermal effects is suppressed. High current is beneficial for increasing the dynamic range of various microwave photonic systems and simplifying high-bit-rate digital receivers in many applications. From the point of view of packaging, detectors with vertical-illumination configuration can be easily handled by pick-and-place tools and are a popular choice for making photo-receiver modules. However, vertical-illumination Si/Ge uni-traveling carrier (UTC) devices suffer from inter-constraint between high speed and high responsivity. Here, we report a high responsivity vertical-illumination Si/Ge UTC photodiode based on a silicon-on-insulator substrate. When the transmission of the monolayer anti-reflection coating was maximum, the maximum absorption efficiency of the devices was 1.45 times greater than the silicon substrate owing to constructive interference. The Si/Ge UTC photodiode had a dominant responsivity at 1550 nm of 0.18 A/W, a 50% improvement even with a 25% thinner Ge absorption layer.
Keyword:
Reprint Author's Address:
Email:
Source :
SCIENTIFIC REPORTS
ISSN: 2045-2322
Year: 2016
Volume: 6
4 . 6 0 0
JCR@2022
ESI Discipline: Multidisciplinary;
ESI HC Threshold:301
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 28
SCOPUS Cited Count: 35
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: