• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xiaoxia (Wang, Xiaoxia.) | Wang, Shuying (Wang, Shuying.) (学者:王淑莹) | Zhao, Ji (Zhao, Ji.) | Dai, Xian (Dai, Xian.) | Li, Baikun (Li, Baikun.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

Scopus SCIE PubMed

摘要:

Although efficient removal of carbon (C), nitrogen (N) and phosphorous (P) from wastewater with low C/N ratio was achieved in anaerobic/aerobic simultaneous nitrification-endogenous denitrification and phosphorus removal (SNEDPR) systems, the removal pathways and metabolic transformations in this complex system are unclear. This work targeted at developing the stoichiometric models for denitrifying glycogen organisms (DGAOs) via nitrite and nitrate (DGAO(Ni) and DGAO(Na)), and demonstrating a novel methodology to quantify diverse functional microorganisms (e.g. ammonia and nitrite oxidizing bacteria, aerobic phosphorus accumulating organisms (APAOs), denitrifying PAOs (DPAOs) and aerobic GAOs (AGAOs)) for the removal of C, N and P. The results showed that the anaerobic intracellular carbon storage (CODintra) was mainly accomplished by GAOs, and PAOs were only responsible for about 40% of CODintra through a stable P release. At the aerobic stage, 84.9% of P was removed by APAOs with 15.1% left by DPAOs, while 64.6% of N was removed by DGAOs (45.8% by DGAO(Ni) and 18.8% by DGAO(Na)) with 18.1% by DPAOs and 173% by bacterial growth. High proportion of N removal via nitrite (partial nitrification endogenous denitrification) (71%) saved 7.3% aeration and 38% intracellular carbon demand. However, AGAOs still activated well at the aerobic intercellular carbon consumption, which limited the further improvement of N removal efficiency. By elucidating the nutrient removal pathways among diverse functional microorganisms, the methodology developed in this study could accelerate the nutrient removal in the SNEDPR process. (C) 2016 Elsevier Ltd. All rights reserved.

关键词:

Stoichiometric model Simultaneous nitrification-endogenous denitrification and phosphorus removal (SNEDPR) Partial nitrification (PN) Denitrifying glycogen accumulating organisms (DGAOs) Phosphorous accumulating organisms (PAOs)

作者机构:

  • [ 1 ] [Wang, Xiaoxia]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Shuying]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Zhao, Ji]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Dai, Xian]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Baikun]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Baikun]Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA

通讯作者信息:

  • 王淑莹

    [Wang, Shuying]Beijing Univ Technol, Engn Res Ctr Beijing, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

WATER RESEARCH

ISSN: 0043-1354

年份: 2016

卷: 95

页码: 319-329

1 2 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:246

中科院分区:1

被引次数:

WoS核心集被引频次: 78

SCOPUS被引频次: 97

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:303/3900012
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司