• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Jing (Bi, Jing.) | Yuan, Haitao (Yuan, Haitao.) | Tie, Ming (Tie, Ming.) | Song, Xiao (Song, Xiao.)

收录:

Scopus SCIE CSCD

摘要:

Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living (AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers (CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine (VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm (HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.

关键词:

ambient assisted living heuristic optimization cloud computing resource provisioning virtual machine

作者机构:

  • [ 1 ] [Bi, Jing]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Bi, Jing]Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China
  • [ 3 ] [Yuan, Haitao]Beijing Jiaotong Univ, Sch Software Engn, Beijing 100044, Peoples R China
  • [ 4 ] [Tie, Ming]Sci & Technol Space Phys Lab, Beijing 100076, Peoples R China
  • [ 5 ] [Tie, Ming]Beijing Inst Near Space Vehicles Syst Engn, Beijing 100076, Peoples R China
  • [ 6 ] [Song, Xiao]Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China

通讯作者信息:

  • [Yuan, Haitao]Beijing Jiaotong Univ, Sch Software Engn, Beijing 100044, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

CHINA COMMUNICATIONS

ISSN: 1673-5447

年份: 2016

期: 5

卷: 13

页码: 56-65

4 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:167

中科院分区:4

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:3449/4251052
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司