收录:
摘要:
This paper investigates the nonlinear breathing vibrations and chaos of a circular truss antenna under changing thermal environment with 1:2 internal resonance for the first time. A continuum circular cylindrical shell clamped by one beam along its axial direction on one side is proposed to replace the circular truss antenna composed of the repetitive beam-like lattice by the principle of equivalent effect. The effective stiffness coefficients of the equivalent circular cylindrical shell are obtained. Based on the first-order shear deformation shell theory and the Hamilton's principle, the nonlinear governing equations of motion are derived for the equivalent circular cylindrical shell. The Galerkin approach is utilized to discretize the nonlinear partial governing differential equation of motion to the ordinary differential equation for the equivalent circular cylindrical shell. The case of the 1:2 internal resonance, primary parametric resonance and 1/2 subharmonic resonance is taken into account. The method of multiple scales is used to obtain the four-dimensional averaged equation. The frequency-response curves and force-response curves are obtained when considering the strongly coupled of two modes. The numerical results indicate that there are the hardening type and softening type nonlinearities for the circular truss antenna. Numerical simulation is used to investigate the influences of the thermal excitation on the nonlinear breathing vibrations of the circular truss antenna. It is demonstrated from the numerical results that there exist the bifurcation and chaotic motions of the circular truss antenna.
关键词:
通讯作者信息:
来源 :
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
ISSN: 0218-1274
年份: 2016
期: 5
卷: 26
2 . 2 0 0
JCR@2022
ESI学科: MATHEMATICS;
ESI高被引阀值:71
中科院分区:3
归属院系: