• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zeng, Wei (Zeng, Wei.) (学者:曾薇) | Zhang, Jie (Zhang, Jie.) | Wang, Anqi (Wang, Anqi.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

Scopus SCIE PubMed

摘要:

Relevance of clade-level population dynamics of "Candidatus Accumulibacter" to performance of denitrifying phosphorus (P) removal from municipal wastewater was investigated. Stable denitrifying P removal in anoxic zone of continuous-flow reactor was achieved, accounting for 90% of total P removal. Clades IIC and IIF affiliated with Accumulibacter lineage were the dominant clades during denitrifying P removal, reaching 90% of ppk1 clone library. NarG gene library indicated Gamma and Beta-proteobacteria played an important role in nitrate reduction. Diversity and abundance of nirS library was much more than nirK, and thus became the main functional gene to execute nitrite reduction. Based on abundance of nirS, nirK and ppk1, the ratio of Accumulibacter capable of denitrifying P removal to total Accumulibacter was 22%. No matter whether Accumulibacter had narG gene or not, high abundance of narG at a level of 109 cells/(g dried-sludge) promoted nitrate reduced to nitrite, ensuring performance of denitrifying P removal. (C) 2016 Elsevier Ltd. All rights reserved.

关键词:

Candidatus Accumulibacter Denitrifying phosphorus removal Municipal wastewater Polyphosphate kinase 1 gene (ppk1) Population dynamics

作者机构:

  • [ 1 ] [Zeng, Wei]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jie]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Anqi]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Water Environm Recovery, Beijing 100124, Peoples R China
  • [ 4 ] [Peng, Yongzhen]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Water Environm Recovery, Beijing 100124, Peoples R China

通讯作者信息:

  • 曾薇

    [Zeng, Wei]Beijing Univ Technol, Dept Environm Engn, Pingleyuan 100, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

BIORESOURCE TECHNOLOGY

ISSN: 0960-8524

年份: 2016

卷: 207

页码: 322-331

1 1 . 4 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:145

中科院分区:1

被引次数:

WoS核心集被引频次: 52

SCOPUS被引频次: 52

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1686/2912362
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司