• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Li, Fanjun (Li, Fanjun.) | Han, Honggui (Han, Honggui.) (学者:韩红桂) | Li, Wenjing (Li, Wenjing.)

收录:

Scopus SCIE

摘要:

In this paper, a novel constructive algorithm, named fast cascade neural network (FCNN), is proposed to design the fully connected cascade feedforward neural network (FCCFNN). First, a modified index, based on the orthogonal least square method, is derived to select new hidden units from candidate pools. Each hidden unit leads to the maximal reduction of the sum of squared errors. Secondly, the input weights and biases of hidden units are randomly generated and remain unchanged during the learning process. The weights, which connect the input and hidden units with the output units, are calculated after all necessary units have been added. Thirdly, the convergence of FCNN is guaranteed in theory. Finally, the performance of FCNN is evaluated on some artificial and real-world benchmark problems. Simulation results show that the proposed FCNN algorithm has better generalization performance and faster learning speed than some existing algorithms. (C) 2015 Elsevier B.V. All rights reserved.

关键词:

Orthogonal least squares Constructive algorithm Feedforward neural network Convergence Cascade correlation network

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Fanjun]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Honggui]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Wenjing]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Fanjun]Univ Jinan, Sch Math Sci, Shandong 250022, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Fanjun]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Han, Honggui]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Wenjing]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2016

卷: 182

页码: 154-164

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:167

中科院分区:3

被引次数:

WoS核心集被引频次: 41

SCOPUS被引频次: 47

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:929/3905318
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司