收录:
摘要:
协同过滤算法是推荐系统中研究较为广泛和深入的算法,为解决传统协同过滤算法无法处理时间动态变化的问题,提出一种新的改进算法:SpecialTSVD++算法.在传统SVD++算法中分别融入用户评分的时间信息、用户和物品的时间偏置,并且加入用户特征信息,增强数据与时间的关联度,体现数据的动态变化,并且结合用户属性产生个性化推荐结果.Movielens-10m数据集上的实验结果表明,SpecialTSVD++算法通过对时间动态变化带来的推荐影响进行优化处理,使推荐结果更加贴近用户当前需求,能显著提升推荐系统准确率.
关键词:
通讯作者信息:
电子邮件地址: