• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

乔俊飞 (乔俊飞.) (学者:乔俊飞) | 孙玉庆 (孙玉庆.) | 韩红桂 (韩红桂.) (学者:韩红桂)

收录:

CQVIP PKU CSCD

摘要:

为提高污水处理过程中出水氨氮的预测精度,并针对RBF神经网络参数难以确定的问题,提出一种改进K-means算法优化RBF神经网络的氨氮预测算法。首先,计算每个样本点的密度值,以其大小是否满足一个阈值为条件,判定该点是否为孤立点或噪声点,来消除孤立点和噪声点对K-means算法的影响;然后利用减法聚类算法初始化K-means算法的聚类中心,并得到聚类中心的个数,将改进后的K-means算法优化RBF神经网络结构;最后,通过对污水处理过程中出水氨氮的实际预测实验,表明所提出的算法具有较强的逼近能力。

关键词:

K-means算法 RBF神经网络 密度指标 氨氮预测

作者机构:

  • [ 1 ] 北京工业大学信息学部

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

控制工程

年份: 2018

期: 03

卷: 25

页码: 375-379

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:306/3765401
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司